Step of Proof: comp_assoc
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
comp
assoc
:
A
,
B
,
C
,
D
:Type,
f
:(
A
B
),
g
:(
B
C
),
h
:(
C
D
). (
h
o (
g
o
f
)) = ((
h
o
g
) o
f
)
latex
by ((((UnivCD)
CollapseTHENM (((Unfold `compose` 0)
CollapseTHEN (Reduce 0))
))
)
Co
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
C
) inil_term)))
latex
C
1
:
C1:
1.
A
: Type
C1:
2.
B
: Type
C1:
3.
C
: Type
C1:
4.
D
: Type
C1:
5.
f
:
A
B
C1:
6.
g
:
B
C
C1:
7.
h
:
C
D
C1:
(
x
.
h
(
g
(
f
(
x
)))) = (
x
.
h
(
g
(
f
(
x
))))
C
.
Definitions
t
T
,
f
o
g
,
x
:
A
.
B
(
x
)
origin